Extractors for binary elliptic curves

نویسندگان

  • Reza Rezaeian Farashahi
  • Ruud Pellikaan
  • Andrey Sidorenko
چکیده

A deterministic extractor for an elliptic curve is a function that converts a random point on the curve to a random-looking bit-string, which is statistically close to a uniformly random bit-string. The problem of converting random points of an elliptic curve into random bits has several cryptographic applications. In this talk, we propose two simple and efficient deterministic extractors for an ordinary elliptic curve E defined over F2N , where N = 2` and ` is an arbitrary positive integer. Our first extractor, H0, for a given point P on E, outputs the first F2` -coefficient of the abscissa of the point P . Similarly the second extractor, H1, for a given point on E, outputs the second F2` -coefficient of the abscissa of the point. Provided that the point P is chosen uniformly at random, the extracted bits of the point P are indistinguishable from a uniformly random bit-string of length `.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-sources Randomness Extractors for Elliptic Curves

This paper studies the task of two-sources randomness extractors for elliptic curves defined over a finite field K, where K can be a prime or a binary field. In fact, we introduce new constructions of functions over elliptic curves which take in input two random points from two different subgroups. In other words, for a given elliptic curve E defined over a finite field Fq and two random points...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Fast Algorithm for Converting Ordinary Elliptic Curves into Binary Edward Form

Scalar multiplication is computationally the most expensive operation in elliptic curve cryptosystems. Many techniques in literature have been proposed for speeding up scalar multiplication. In 2008, Bernstein et al proposed binary Edwards curves on which scalar multiplication is faster than traditional curves. At Crypto 2009, Bernstein obtained the fastest implementation for scalar multiplicat...

متن کامل

Applications of an Isomorphism of Binary Elliptic Curves

In this paper, we discuss an isomorphism between elliptic curves defined over binary fields (curves defined over F2n). We introduce a simple public-key encryption scheme for binary elliptic curves. Here we demonstrate that this encryption scheme is as secure as the EC El Gamal cryptosystem. The basis of the encryption scheme is this isomorphism between binary elliptic curves. We use this same i...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2008